A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy
نویسندگان
چکیده
CT image reconstruction is typically evaluated based on the ability to reduce the radiation dose to as-low-as-reasonably-achievable (ALARA) while maintaining acceptable image quality. However, the determination of common image quality metrics, such as noise, contrast, and contrast-to-noise ratio, is often insufficient for describing clinical radiotherapy task performance. In this study we designed and implemented a new comparative analysis method associating image quality, radiation dose, and patient size with radiotherapy task performance, with the purpose of guiding the clinical radiotherapy usage of CT reconstruction algorithms. The iDose4 iterative reconstruction algorithm was selected as the target for comparison, wherein filtered back-projection (FBP) reconstruction was regarded as the baseline. Both phantom and patient images were analyzed. A layer-adjustable anthropomorphic pelvis phantom capable of mimicking 38-58 cm lateral diameter-sized patients was imaged and reconstructed by the FBP and iDose4 algorithms with varying noise-reduction-levels, respectively. The resulting image sets were quantitatively assessed by two image quality indices, noise and contrast-to-noise ratio, and two clinical task-based indices, target CT Hounsfield number (for electron density determination) and structure contouring accuracy (for dose-volume calculations). Additionally, CT images of 34 patients reconstructed with iDose4 with six noise reduction levels were qualitatively evaluated by two radiation oncologists using a five-point scoring mechanism. For the phantom experiments, iDose4 achieved noise reduction up to 66.1% and CNR improvement up to 53.2%, compared to FBP without considering the changes of spatial resolution among images and the clinical acceptance of reconstructed images. Such improvements consistently appeared across different iDose4 noise reduction levels, exhibiting limited interlevel noise (< 5 HU) and target CT number variations (< 1 HU). The radiation dose required to achieve similar contouring accuracy decreased when using iDose4 in place of FBP, up to 32%. Contouring accuracy improvement for iDose4 images, when compared to FBP, was greater in larger patients than smaller-sized patients. Overall, the iDose4 algorithm provided superior radiation dose control while maintaining or improving task performance, when compared to FBP. The reader study on image quality improvement of patient cases shows that physicians preferred iDose4-reconstructed images on all cases compared to those from FBP algorithm with overall quality score: 1.21 vs. 3.15, p = 0.0022. However, qualitative evaluation strongly indicated that the radiation oncologists chose iDose4 noise reduction levels of 3-4 with additional consideration of task performance, instead of image quality metrics alone. Although higher iDose4 noise reduction levels improved the CNR through the further reduction of noise, there was pixelization of anatomical/tumor structures. Very-low-dose scans yielded severe photon starvation artifacts, which decreased target visualization on both FBP and iDose4 reconstructions, especially for the 58 cm phantom size. The iDose4 algorithm with a moderate noise reduction level is hence suggested for CT simulation and treatment planning. Quantitative task-based image quality metrics should be further investigated to accommodate additional clinical applications.
منابع مشابه
Methods to evaluate the performance of kilovoltage cone-beam computed tomography in the three-dimensional reconstruction space
Background: Cone-beam computed tomography (CBCT) scanners for image-guided radiotherapy are in clinical use today, but there has been no consensus on uniform acceptance to verify the CBCT image quality yet. The present work proposed new methods to fully evaluate the performance of CBCT in its three-dimensional (3D) reconstruction space. Materials and Methods: Compared to the traditional methods...
متن کاملA Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images
Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...
متن کاملInvestigating the effects of different kernels used for CT image reconstruction on dose distributions in treatment planning of kidney cancer radiotherapy
Introduction: The quality of CT images used for treatment planning of cancer patients is an important issue in accurate outlining of the tumor volume and organs at risk. Different kernels in CT scanner systems are available for improving the image quality. Applying these kernels on CT images will change the CT numbers and electron density of tissues, conse...
متن کاملBlock-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کاملThe influence of using different reconstruction algorithms on sensitivity of quantitative 18F-FDG-PET volumetric measures to background activity variation
Introduction: This study aims to investigate the influence of background activity variation on image quantification in differently reconstructed PET/CT images. Methods: Measurements were performed on a Discovery-690 PET/CT scanner using a custom-built NEMA-like phantom. A background activity level of 5.3 and 2.6 kBq/ml 18F-FDG were applied. Ima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2016